Diferenças entre edições de "Fórmulas da duplicação e da bisseção do ângulo"

Da WikiCiências
Share/Save/Bookmark
Ir para: navegação, pesquisa
(Adição de dois ângulos)
Linha 3: Linha 3:
 
<span style="font-size:8pt"><b>Autor</b>: <i>João Nuno Tavares e Ângela Geraldo</i></span><br>
 
<span style="font-size:8pt"><b>Autor</b>: <i>João Nuno Tavares e Ângela Geraldo</i></span><br>
 
<span style="font-size:8pt"><b>Editor</b>: <i>Colocar nome do editor</i></span>
 
<span style="font-size:8pt"><b>Editor</b>: <i>Colocar nome do editor</i></span>
 
 
----
 
----
 
  
 
==Adição de dois ângulos==
 
==Adição de dois ângulos==
Linha 23: Linha 21:
  
 
\(\cos (\alpha+\beta)= \overline{ON}=\overline{OS}+\overline{HR}\)
 
\(\cos (\alpha+\beta)= \overline{ON}=\overline{OS}+\overline{HR}\)
 +
 +
 +
O facto de \([ORS]\) e \([OPM]\) serem triângulos semelhantes permite estabelecer a seguinte igualdade:
 +
 +
\(\displaystyle \frac {\overline{RS}}{\overline{PM}}=\frac{\overline{OS}}{\overline{OM}}=\frac{\overline{OR}}{\overline{OP}}\)
 +
 +
que, atendendo as relações estabelecidas anteriormente é equivalente a
 +
 +
\(\displaystyle \frac {\overline{RS}}{\sin \alpha}=\frac{\overline{OS}}{\cos \alpha}=\frac{\cos \beta}{1}\)
 +
 +
 +
Daqui resulta que \(\overline{RS}=\sin \alpha \, \cos \beta\) e \(\overline{OS}=\cos \alpha \, \cos \beta\).
 +
 +
 +
Atendendo ao facto de \([HQR]\) e \([OPM]\) também serem triângulos semelhantes podemos da mesma forma estabelecer a seguinte igualdade:
 +
 +
\(\displaystyle \frac {\overline{HR}}{\overline{PM}}=\frac{\overline{QH}}{\overline{OM}}=\frac{\overline{QR}}{\overline{OP}}\)
 +
 +
que, usando as relações estabelecidas anteriormente para o seno e cosseno dos ângulos é equivalente a
 +
 +
\(\displaystyle \frac {\overline{HR}}{\sin \alpha}=\frac{\overline{QH}}{\cos \alpha}=\frac{\sen \beta}{1}\)
 +
 +
 +
Daqui resulta que \(\overline{HR}=\sin \alpha \, \sin \beta\) e \(\overline{QH}=\cos \alpha \, \sin \beta\).
 +
 +
 +
 +
 +
 +
 +
  
 
==Referências==
 
==Referências==

Revisão das 19h11min de 23 de fevereiro de 2013

Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor


Adição de dois ângulos

Consideremos um círculo trigonométrico e sejam \(\alpha\) e \(\beta\) dois ângulos positivos de vértice no centro \(O\) do círculo e cuja soma \(\alpha+\beta\) é menor do que \(\displaystyle \frac{\pi}{2} \mbox{ rad}\).

Os lados extremidades dos ângulos \(\alpha\) e \(\beta\) intersectam a circunferência em dois pontos, denominados \(P\) e \(Q\), respetivamente. Por esses dois pontos, traçamos dois segmentos de reta perpendiculares a \(OA\), \([PM]\) e \([QN]\), respectivamente (Fig.1). Por \(Q\) tracemos um segmento de reta \([QR]\) perpendicular a \(OP\) e por \(R\) tracemos um segmento de reta \([HR]\) paralelo a \(OA\) e um segmento de reta \([RS]\) perpendicular a \(OA\) (ver figura 1).

Obtemos assim três triângulos retângulos \([OPM]\), \([ORS]\) e \([HQR]\) que são semelhantes.


Como se trata de um círculo cujo raio tem uma unidade, as definições de seno e cosseno de um ângulo agudo permitem-nos estabelecer as seguintes relações:

\(\sin \alpha= \overline{PM}\)  ; \(\cos \alpha= \overline{OM}\)  ; \(\sin \beta= \overline{QR}\)  ; \(\cos \beta= \overline{OR}\)

\(\sin (\alpha+\beta)= \overline{QN}=\overline{QH}+\overline{RS}\)

\(\cos (\alpha+\beta)= \overline{ON}=\overline{OS}+\overline{HR}\)


O facto de \([ORS]\) e \([OPM]\) serem triângulos semelhantes permite estabelecer a seguinte igualdade:

\(\displaystyle \frac {\overline{RS}}{\overline{PM}}=\frac{\overline{OS}}{\overline{OM}}=\frac{\overline{OR}}{\overline{OP}}\)

que, atendendo as relações estabelecidas anteriormente é equivalente a

\(\displaystyle \frac {\overline{RS}}{\sin \alpha}=\frac{\overline{OS}}{\cos \alpha}=\frac{\cos \beta}{1}\)


Daqui resulta que \(\overline{RS}=\sin \alpha \, \cos \beta\) e \(\overline{OS}=\cos \alpha \, \cos \beta\).


Atendendo ao facto de \([HQR]\) e \([OPM]\) também serem triângulos semelhantes podemos da mesma forma estabelecer a seguinte igualdade:

\(\displaystyle \frac {\overline{HR}}{\overline{PM}}=\frac{\overline{QH}}{\overline{OM}}=\frac{\overline{QR}}{\overline{OP}}\)

que, usando as relações estabelecidas anteriormente para o seno e cosseno dos ângulos é equivalente a

\(\displaystyle \frac {\overline{HR}}{\sin \alpha}=\frac{\overline{QH}}{\cos \alpha}=\frac{\sen \beta}{1}\)


Daqui resulta que \(\overline{HR}=\sin \alpha \, \sin \beta\) e \(\overline{QH}=\cos \alpha \, \sin \beta\).





Referências