Diferenças entre edições de "Resolução de triângulos"
(→Resolução de triângulos retângulos) |
(→Resolução de triângulos retângulos) |
||
Linha 31: | Linha 31: | ||
|} | |} | ||
− | Pelas definições de [[Seno de um ângulo agudo|seno]] e [[Cosseno de um ângulo agudo|cosseno]] de um ângulo agudo sabemos que \(\displaystyle \sin B= \frac{b}{a}\) e \(\displaystyle \cos B= \frac{c}{a}\) donde resulta que, \(b=a \sin B \,\) e \(c= a \cos B\). | + | Pelas definições de [[Seno de um ângulo agudo|seno]] e [[Cosseno de um ângulo agudo|cosseno]] de um ângulo agudo sabemos que \(\displaystyle \sin B= \frac{b}{a}\) e \(\displaystyle \cos B= \frac{c}{a}\) donde resulta que, \(b=a \, \sin B \,\) e \(c= a \, \cos B\). |
− | Como \(B\) e \(C\) são ângulos complementares temos ainda que \(\sin B= \cos C\) e que \(\cos B= \sin C\), passando as fórmulas anteriores a serem equivalentes a \(b=a \cos C\) e \(c= a \sin C\), respetivamente. | + | Como \(B\) e \(C\) são ângulos complementares temos ainda que \(\sin B= \cos C\) e que \(\cos B= \sin C\), passando as fórmulas anteriores a serem equivalentes a \(b=a \, \cos C\) e \(c= a \, \sin C\), respetivamente. |
Linha 49: | Linha 49: | ||
<u>Exemplo</u>: | <u>Exemplo</u>: | ||
− | Sabendo que a hipotenusa \(a=32,63\) e que o ângulo agudo \(B=34º\,52' \,8' '\), temos então que: | + | Sabendo que a hipotenusa \(a=32,63\)cm e que o ângulo agudo \(B=34º\,52' \,8' '\), temos então que: |
− | \(C=90º-(34º\,52' \,8' ')=55º\,7' \, 52' '\) | + | \(C=90º-(34º\,52' \,8' ')=55º\,7' \,52' '\) |
+ | |||
+ | \(b=a \, \sin B \, \Leftrightarrow \, b=32,63 \times \sin (55º\,7' \,52' ') \, \Leftrightarrow \, b \simeq 26,77\)cm | ||
+ | |||
+ | \(c=a \, \cos B \, \Leftrightarrow \, c=32,63 \times \cos (55º\,7' \,52' ') \, \Leftrightarrow \, c \simeq 18,65\)cm | ||
Revisão das 23h20min de 18 de fevereiro de 2013
Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor
Índice |
O que é resolver um triângulo
Em qualquer triângulo podemos considerar como elementos principais os seus três lados e os três ângulos internos e todos os outros elementos como elementos secundários, como por exemplo, as alturas, as medianas, o raio do círculo circunscrito, etc.
A resolução de triângulos consiste em determinar alguns elementos do triângulo a partir de elementos já conhecidos. Quando nos referimos a determinar os elementos queremos dizer determinar a medida desses elementos.
Resolução de triângulos retângulos
Relações entre os seus elementos
Considerando um triângulo retângulo \([ABC]\) e designemos por \(a\), \(b\) e \(c\) os lados desse triângulo e por \(A\), \(B\) e \(C\) os seus ângulos internos opostos a cada um dos lados, respetivamente.
Estes seis elementos do triângulo satisfazem relações importantes, tais como (considerando \(A=90º\)):
\[a^2=b^2+c^2 \quad \] | (Teorema de Pitágoras) |
\[B+C=90º \quad \] | (ângulos complementares) |
Pelas definições de seno e cosseno de um ângulo agudo sabemos que \(\displaystyle \sin B= \frac{b}{a}\) e \(\displaystyle \cos B= \frac{c}{a}\) donde resulta que, \(b=a \, \sin B \,\) e \(c= a \, \cos B\).
Como \(B\) e \(C\) são ângulos complementares temos ainda que \(\sin B= \cos C\) e que \(\cos B= \sin C\), passando as fórmulas anteriores a serem equivalentes a \(b=a \, \cos C\) e \(c= a \, \sin C\), respetivamente.
Resolução de triângulos retângulos
Sabemos que para definir um triângulo precisamos conhecer três dos seus elementos, sendo um deles necessariamente um lado. Como estamos a considerar triângulos retângulos um dos ângulos já é conhecido, o ângulo reto, por isso bastam mais dois elementos. Exstem assim quatro casos possíveis.
1ºcaso - São conhecidos a hipotenusa e um ângulo agudo
Neste caso, para determinar a amplitude do ângulo agudo desconhecido, usamos o facto de \(B\) e \(C\) serem ângulos complementares. Em seguida, usamos as fórmulas \(b=a \, \sin B\) e \(c=a \, \cos B\) para determinar o comprimento dos dois catetos.
Exemplo:
Sabendo que a hipotenusa \(a=32,63\)cm e que o ângulo agudo \(B=34º\,52' \,8' '\), temos então que:
\(C=90º-(34º\,52' \,8' ')=55º\,7' \,52' '\)
\(b=a \, \sin B \, \Leftrightarrow \, b=32,63 \times \sin (55º\,7' \,52' ') \, \Leftrightarrow \, b \simeq 26,77\)cm
\(c=a \, \cos B \, \Leftrightarrow \, c=32,63 \times \cos (55º\,7' \,52' ') \, \Leftrightarrow \, c \simeq 18,65\)cm
2ºcaso - São conhecidos um cateto e um ângulo agudo
Neste caso, para determinar a amplitude do ângulo agudo desconhecido, usamos o facto de \(B\) e \(C\) serem ângulos complementares. Em seguida, considerando o ângulo oposto ao cateto conhecido, sabemos que o seno desse ângulo é igual ao quociente entre o cateto conhecido (cateto oposto) e a hipotenusa, daí resulta que o comprimento da hipotenusa é igual ao quociente entre o cateto e o seno desse ângulo. Ou, se considerarmos o ângulo agudo cujo cateto adjacente é o cateto conhecido, sabemos que o cosseno desse ângulo é igual ao quociente entre o cateto conhecido e a hipotenusa, daí resulta que o comprimento da hipotenusa é igual ao quociente entre o cateto e o cosseno desse ângulo. Para determinar o terceiro lado do triângulo usamos o Teorema de Pitágoras.
Exemplo:
3ºcaso - São conhecidos a hipotenusa e um cateto
Para determinarmos o comprimento do terceiro lado do triângulo usamos diretamente o Teorema de Pitágoras. Conhecidos os três lados do triângulo, utilizamos as razões trigonométricas para determinar a amplitude de cada um dos ângulos agudos.
Exemplo:
4ºcaso - São conhecidos os dois catetos
O comprimento da hipotenusa pode ser determinado através do Teorema de Pitágoras. Para se determinar a amplitude de cada um dos ângulos agudos usamos uma das razões trigonométricas.
Exemplo: