Função logarítmica
Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor
Índice |
Definição
Uma função real \(L: \mathbb{R}^{+} \longrightarrow \mathbb{R}\), chama-se uma função logarítmica quando tem as seguintes propriedades:
A) \(L\) é uma função crescente, isto é, \(x<y \, \Leftrightarrow \, L(x)<L(y)\);
B) \(L(xy)=L(x)+L(y)\) para quaisquer \(x\), \(y \in \mathbb{R}^{+}\).
Para todo \(x \in \mathbb{R}^{+}\), o número \(L(x)\) é o logaritmo de \(x\).
Propriedades
1) Injetividade: Uma função logarítmica é sempre injetiva, ou seja, números positivos diferentes têm logaritmos diferentes.
Considerando \(x\) e \(y\) esses números, podemos então ter que \(x<y\) ou \(x>y\). Se \(x<y\) resulta da propriedade A) que \(L(x)<L(y)\). Da mesma forma, se \(x>y\) então \(L(x)>L(y)\). Nos dois casos, considerando \(x \neq y\) temos que \(L(x) \neq L(y)\).
2) Logaritmo de 1:
O logaritmo de 1 é zero, pois da propriedade 2) resulta que,
\(L(1)=L(1 \times 1)=L(1)+L(1)\quad \) logo \(\quad L(1)=0\).
3) Os números maiores do que 1 têm logaritmos positivos e os números positivos menores do que 1 têm logaritmos negativos.
Sendo \(L\) uma função crescente consideremos \(0<x<1<y\), temos então que \(L(x)<L(1)<L(y)\), isto é, \(L(x)<0<L(y)\).
4)