Principio de indução matemática

Da WikiCiências
Share/Save/Bookmark
Revisão das 09h58min de 29 de novembro de 2012 por Jntavar e Angela (discussão | contribs)

Ir para: navegação, pesquisa

Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor


Principio de indução matemática

O Principio de indução matemática diz o seguinte - seja \(\mathcal{P}(n)\) uma proposição que depende de um inteiro natural \(n\in \mathbb{N}\). Então:


  • se \(\mathcal{P}(1)\) é verdadeira, e se
  • \(\forall n\in \mathbb{N}\) se \(\mathcal{P}(n)\) é verdadeira então \(\mathcal{P}(n+1)\) também o é


a proposição \(\mathcal{P}(n)\) é verdadeira \(\forall n\in \mathbb{N}\). O princípio serve pois para provar proposições do tipo \(\forall n\in \mathbb{N}, \, \mathcal{P}(n)\).

Domino1.gif
A maneira mais usual de visualizar este princípio é a da queda de peças de dominó em cadeia -

se a primeira cai, e se cada peça provocar a queda da seguinte, entao todas caiem. Mas se a primeira não cai, ou se existe na cadeia alguma peça que não provoque a cada da seguinte, nem todas caiem!

Exemplos