Ângulo (medidas)
Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor
Índice |
Ângulos orientados
Noção de ângulo
Uma semi-reta de origem \(O\), pertencente a um dado plano, pode mover-se nesse plano rodando em torno de \(O\) em dois sentidos: ou no sentido contrário ao do movimento dos ponteiros do relógio que será o sentido positivo, ou no sentido oposto, sentido negativo. Quando a semi-reta partindo da posição \(a\), roda em torno da origem \(O\) acabando por ocupar a posição \(b\), diz-se que descreveu o ângulo \(\angle a,b\). À semi-reta \(a\) chamamos lado origem e à semi-reta \(b\) lado extremidade. O ponto \(O\) é o vértice do ângulo.
Assim, o ângulo é positivo ou negativo, conforme o sentido de rotação que leva o lado origem a ocupar a posição lado extremidade seja positivo ou negativo. Nestas condições, a ordem pela qual se consideram lados do ângulo não é indiferente tendo o ângulo um sentido (ângulo orientado).
Quando a semi-reta \(a\) descreve uma rotação em torno da origem \(O\) de tal forma que vem a ocupar a posição inicial, efetuando assim uma revolução completa num dado sentido, dizemos que essa semi-reta descreveu o ângulo de um giro, ou mais simplesmente, um ângulo giro. E como nada impede que esse movimento de rotação continue (no sentido positivo ou negativo), concebem-se assim ângulos (positivos ou negativos) que podem exceder um ou mais ângulos giros.
Portanto, um par ordenado \((a,b)\) de duas semi-retas com a mesma origem \(O\) corresponde a um ser geométrico múltiplo chamado ângulo trigonométrico, constituído por um número infinito de determinações, cada uma das quais se refere à amplitude e sentido da rotação que leva o lado origem a coincidir com o lado extremidade.
Medida dos ângulos
Se \(A\) e \(U\) forem duas grandezas (da mesma espécie contínua) e se \(U\) for não nula, existe um e um só número real \(\alpha\) tal que, \(A=\alpha U\). A este número \(\alpha\) chama-se a medida de \(A\) relativamente a \(U\). Determinar \(\alpha\) é medir a grandeza \(A\) tomando para unidade a grandeza \(U\).
Considerando agora os ângulos orientados, podemos afirmar que dados dois ângulos \(A\) e \(U\) (\(U\) não nulo), existe um e um só número real \(m\) tal que, \(A=m U\). O número \(m\) representa assim a medida do ângulo \(A\) relativamente à unidade \(U\).
Fixada a unidade \(U\) estabelece-se assim uma correspondência biunívoca entre o conjunto dos ângulos orientados e conjunto dos números reais (medidas dos ângulos). Esta correspondência é tal que a relação de igualdade, a relação de grandeza e a adição de ângulos se traduz, respetivamente, na relação de igualdade, na relação de grandeza e na adição de números reais.
A escolha da unidade \(U\) é arbitrária, mas habitualmente usa-se um dos três sistemas de unidades definidos em seguida.
Sistema sexagesimal
No sistema sexagesimal admite-se como unidade fundamental o grau. Um grau corresponde a \(\displaystyle \frac{1}{90}\) do ângulo reto que por sua vez é um quarto de um ângulo giro.
Assim sendo, um ângulo reto mede \(90º\) (90 graus) e um ângulo giro mede \(360º\) (360 graus) pois 90\(\times\)4=360.
Como submúltiplos do grau usam-se:
O minuto sexagesimal \((1')\) corresponde a \(\displaystyle \frac{1}{60}\) do grau, ou seja, 60 minutos sexagesimais são 1 grau. O segundo sexagesimal \((1' ')\) corresponde a \(\displaystyle \frac{1}{60}\) do minuto e portanto \(\displaystyle \frac{1}{3600}\) do grau, ou seja, 3600 segundos sexagesimais são 1 grau. O décimo do segundo, o centésimo do segundo etc. |
|
Exemplo
Um ângulo composto de 30 graus, 12 minutos, 8 segundos e 2 centésimos que simbolicamente podemos representar por \(30º\) \(12'\) \(8' '\) \(,02\)
tem uma medida em graus de \(\displaystyle 30+\frac{12}{60}+\frac{8}{3600}+\frac{2}{360\times 100}\).
Para indicar a medida deste ângulo usamos habitualmente a notação \(30º\) \(12'\) \(8' '\) \(,02\) para nos referirmos ao número anterior.
Sistema centesimal
No sistema centesimal admite-se como unidade fundamental o grado. Um grado corresponde a \(\displaystyle \frac{1}{100}\) do ângulo reto que por sua vez é um quarto de um ângulo giro.
Assim sendo, um ângulo reto mede \(100^{g}\) (100 grados) e um ângulo giro mede \(400^{g}\) (400 grados) pois 100\(\times\)4=400.
Como submúltiplos do grado usam-se:
O minuto centesimal \((1^{‵})\) corresponde a \(\displaystyle \frac{1}{100}\) do grau, ou seja, 100 minutos centesimais são 1 grado. O segundo centesimal \((1‶)\) corresponde a \(\displaystyle \frac{1}{100}\) do minuto e portanto \(\displaystyle \frac{1}{10000}\) do grado, ou seja, 10000 segundos centesimais são 1 grado. O décimo do segundo centesimal, o centésimo do segundo centesimal etc. |
|
Sistema circular
No sistema circular a unidade de medida é o radiano. Como sabemos um radiano é a medida de um ângulo ao centro definido num círculo por um arco com o mesmo comprimento que o raio do círculo. Sabemos também que existe proporcionalidade direta entre a medida de um ângulo ao centro e o comprimento do arco correspondente. Considerando o ângulo da figura 1 podemos então estabelecer que:
\[\frac{\mbox{medida de um radiano}}{\mbox{medida de um ângulo giro}}=\frac{\mbox{comprimento do arco } AB}{\mbox{comprimento da circunferência}}\]
Como o comprimento do arco \(AB\) é igual ao raio do círculo, resulta que
\[\frac{\mbox{medida de um radiano}}{\mbox{medida de um ângulo giro}}=\frac{r}{2\pi r}=\frac{1}{2\pi}\]
Esta relação mostra que a medida de um ângulo giro é de \(2\pi\) radianos.
Estabelecendo a relação com os dois sistemas de unidades anteriores temos que:
\(360º=2\pi \mbox{ radianos}\) e \(400^{g}=2\pi \mbox{ radianos}\)
Daqui resulta que,
\(\displaystyle 1 \mbox{ radiano}={\left(\frac{360}{2\pi}\right)}º \simeq 57º \,\, 17' \,\, 45' '\)
\(\displaystyle 1 \mbox{ radiano}=\left(\frac{400}{2\pi}\right)^{g} \simeq 63º \,\, 66^{‵} \,\, 20‶ \)
Passagem de um sistema de unidades para outro
Notas históricas
Referências
- J. Jorge G. Calado (1974) "Compêndio de Trigonometria" 4ªedição. Liv. Popular de Francisco Franco, Lisboa.
- Elemento 2
- Elemento 3