Equações da reta

Da WikiCiências
Share/Save/Bookmark
Revisão das 00h02min de 5 de fevereiro de 2013 por Jntavar e Angela (discussão | contribs)

Ir para: navegação, pesquisa

Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor



Índice


Reta perpendicular a um vetor

Equação cartesiana

Considerando dois vetores \(\vec u\) e \(\vec x\), com \(\vec u \neq 0\), a equação em \(\vec x\), \(\vec u \cdot \vec x =0\) representa o conjunto de todos os vetores \(\vec x\) que são ortogonais a \(\vec u\). Temos então dois casos:
  • No plano, a equação \(\vec u \cdot \vec x =0\) representa a reta vetorial (isto é, que passa na origem) ortogonal a \(\vec u\). Se \(\vec u =(a,b)\) e \(\vec x =(x,y)\), \(\vec u \cdot \vec x = (a,b) \cdot (x,y)= ax +by\), e então a equação escreve-se da forma,
\[ax + by=0\]

\(\qquad\)e diz-se a equação cartesiana da reta referida.


  • No espaço, a equação \(\vec u \cdot \vec x =0\) representa o plano vetorial (isto é, que passa na origem) ortogonal a \(\vec u\). Se \(\vec u =(a,b,c)\) e \(\vec x =(x,y,z)\), \(\vec u \cdot \vec x = (a,b,c) \cdot (x,y,z)= ax+by+cz\), e então a equação escreve-se da forma,
\[ax + by + cz=0\]

\(\qquad\)e diz-se a equação cartesiana do plano referido.

                Exemplos
  • \(2x-y=0\) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(2,-1)\).
  • \(-x+3y+5=0\) é a equação do plano vetorial ortogonal ao vetor \(\vec u =(-1,3,5)\).
  • \(3x-4z=0\) (em \(\mathbb{R}^3\)) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(3,0,-4)\). Esta reta está contida no plano \(y=0\), ou seja no plano \(xOz\).


Aplicação

Como calcular a equação cartesiana da reta que passa em \(A=(-1,2)\) e é perpendicular ao vetor \(\vec u=(3,4)\)?

Consideramos \(P=(x,y)\) um ponto genérico dessa reta, então o vetor \(\overrightarrow{AP}=P-A=(x,y)-(-1,2)=(x+1,y-2)\) é ortogonal ao vetor \(\vec u\). Portanto, \(\overrightarrow{AP} \cdot \vec u=0\), isto é,

\((x+1,y-2) \cdot (3,4)=0 \, \Longleftrightarrow \, 3(x+1)+4(y-2)=0 \, \Longleftrightarrow \, 3x+4y=5\).


Equação vetorial

Considerando a mesma reta, \(\vec u \cdot \vec x =0\), vejamos que o vetor \(\vec v=(-b,a)\) pertence à reta uma vez que \(\vec u \cdot \vec v=(a,b) \cdot (-b,a)= -ab+ba=0\). Portanto a reta é também o conjunto de todos os vetores \(\vec x\) que são múltiplos escalares do vetor \(\vec v\). Isto é,

\[ax+by=0 \, \Longleftrightarrow\] \[\,\{\vec x \in \mathbb{R}^2: \vec x=t(-b,a), \quad t \in \mathbb{R}\}\]

A equação \(\vec x=t \vec v\) diz-se equação vetorial da reta referida.


Equações paramétricas

Se \(\vec x =(x,y)\), como \(\vec v=(-b,a)\), então \(\vec x=t \vec v \, \Leftrightarrow \, (x,y)=t(-b,a) \, \Leftrightarrow \, x=-tb \wedge y=ta\), sendo que assim a equação vetorial é equivalente às duas equações seguintes:
\[ \left\{\begin{array}{ll} x=-tb & \\ & , t \in \mathbb{R} \\ y=ta & \end{array} \right.\]

Que se dizem equações paramétricas da reta referida. Quando o "tempo" \(t\) varia, elas representam o movimento de um ponto (partícula) que se desloca sobre a reta com movimento uniforme de vetor-velocidade \(\vec v=(-b,a)\) e velocidade (escalar) \(v=\|\vec v\|=\sqrt{a^2+b^2}\).

                (Colocar Applet)

Aplicação

Como calcular as equações paramétricas da reta que passa no ponto \(A=(2,-3)\) e é perpendicular ao vetor \(\vec u=(1,4)\)?

O vetor \(\vec v=(-4,1)\) é perpendicular ao vetor \(\vec u\) pois \(\vec u \cdot \vec v=(1,4) \cdot (-4,1)=-4+4=0\). Portanto, pretendemos as equações paramétricas da reta que passa em \(A\) e é paralela ao vetor \(\vec v\). Se \(P=(x,y)\) um ponto genérico dessa reta, então \(\overrightarrow{AP}=P-A=(x,y)-(2,-3)=(x-2,y+3)\) é um múltiplo escalar do vetor \(\vec v\), isto é, \(\overrightarrow{AP}=t\vec v\), ou seja,

\((x-2,y+3)=t(-4,1) \, \Longleftrightarrow \, \left\{\begin{array}{ll} x=2-4t \\ y=-3+t \, , \quad t \in \mathb{R}\end{array}\right.\)

Reta que passa por dois pontos

Equação vetorial

Pretendemos agora determinar a equação de uma reta que passa em dois pontos distintos. Temos então dois casos:

No plano, sejam \(A=(x_A,y_A)\) e \(B=(x_B,y_B)\) esses dois pontos, queremos então determinar a equação da reta que passa por \(A\) e é paralela ao vetor \(\overrightarrow{AB}\). Se \(P=(x,y)\) é um ponto genérico dessa reta temos que,

\[P=A+t\overrightarrow{AB}\, , \quad t \in \mathbb{R}\]

que é chamada a equação vetorial da reta. Em coordenadas, \((x,y)=(x_A,y_A)+t(x_B-x_A,y_B-y_A) \, , \quad t \in \mathbb{R}\).


No espaço, considerando \(A=(x_A,y_A,z_A)\) e \(B=(x_B,y_B,z_B)\) os dois pontos pelos quais passa a reta a sua equação vetorial é:

\[(x,y,z)=(x_A,y_A,z_A)+t(x_B-x_A,y_B-y_A,z_B-z_A) \, , \quad t \in \mathbb{R}\].

Equações paramétricas

Das equações vetoriais da reta anteriores podemos obter as equações paramétricas. Para o caso em que \(A\) e \(B\) são pontos em \(\mathbb{R}^2\) a equação vetorial da reta é equivalente a \(x=x_A+t(x_b-x_A) \, \wedge \, y=y_A+t(y_B-y_A)\), ou num sistema:

\[ \left\{\begin{array}{ll} x=x_A+t(x_b-x_A) & \\ & , t \in \mathbb{R} \\ y=y_A+t(y_B-y_A) & \end{array} \right.\]


Para o caso em que \(A\) e \(B\) são pontos em \(\mathbb{R}^3\) a equação vetorial da reta é equivalente a \(x=x_A+t(x_b-x_A) \, \wedge \, y=y_A+t(y_B-y_A) \, \wedge \, z=z_A+t(z_B-z_A)\), ou num sistema, considerando \(t \in \mathbb{R}\):

\[ \left\{\begin{array}{l} x=x_A+t(x_B-x_A) \\ y=y_A+t(y_B-y_A) \\ z=z_A+t(z_B-z_A) \end{array} \right.\]

Equação cartesiana

Simplificando os sistemas anteriores e eliminando o parâmetro \(t\), obtemos do primeiro sistema a equação cartesiana da reta no plano, que passa pelos pontos \(A=(x_A,y_A)\) e \(B=(x_B,y_B)\):

\[(y_B-y_A)(x-x_A)=(y-y_A)(x_B-x_A)\]
  • Se \(x_B-x_A=0\), então \(y_B-y_A \neq 0\), pois os dois pontos são distintos, e a reta é uma reta vertical de equação \(x=x_A\).
  • Se \(y_B-y_A=0\), então \(x_B-x_A \neq 0\), pois os dois pontos são distintos, e a reta é uma reta horizontal de equação \(y=y_A\).
  • Se \(x_B-x_A \neq 0\) e \(y_B-y_A \neq 0\), a reta tem por equação:

\[y=y_A+\frac{(y_B-y_A)}{(x_B-x_A)}(x-x_A)\]

Do segundo sistema obtemos a equação cartesiana da reta que passa em \(A\) e \(B\) no espaço, com \(A, B \in \mathbb{R}^3\).

\[\frac{(x-x_A)}{(x_B-x_A}=\frac{(y-y_A)}{(y_B-y_A}=\frac{(z-z_A)}{(z_B-z_A)}\]