Diferenças entre edições de "Produto escalar"

Da WikiCiências
Share/Save/Bookmark
Ir para: navegação, pesquisa
(Propriedades)
(Propriedades)
Linha 44: Linha 44:
 
* \(\vec u\) e \(\vec v\) têm o <u>mesmo sentido</u> então \(\vec u \cdot \vec v = \|\vec u\| . \|\vec v\|\) pois
 
* \(\vec u\) e \(\vec v\) têm o <u>mesmo sentido</u> então \(\vec u \cdot \vec v = \|\vec u\| . \|\vec v\|\) pois
  
 
+
\(\quad \quad \vec u\) e \(\vec v\) colineares  com o mesmo sentido \(\Rightarrow \, \vec u \mbox{^} \vec v = 0º \, \Rightarrow  \, \cos(\vec u \mbox{^} \vec v)=1 \, \Rightarrow \, \vec  u \cdot \vec v = \|\vec u\| . \|\vec v\|\).
\(\quad quad \vec u\) e \(\vec v\) colineares  com o mesmo sentido \(\Rightarrow \, \vec u \mbox{^} \vec v = 0º \, \Rightarrow  \, \cos(\vec u \mbox{^} \vec v)=1 \, \Rightarrow \, \vec  u \cdot \vec v = \|\vec u\| . \|\vec v\|\).
+
  
 
* \(\vec u\) e \(\vec v\) têm <u>sentido contrário</u> então \(\vec u \cdot \vec v = - \|\vec u\| . \|\vec v\|\) pois
 
* \(\vec u\) e \(\vec v\) têm <u>sentido contrário</u> então \(\vec u \cdot \vec v = - \|\vec u\| . \|\vec v\|\) pois
  
 
+
\(\quad \quad \vec u\) e \(\vec v\) colineares  com o sentidos contrários \(\Rightarrow \, \vec u \mbox{^} \vec v = 180º \, \Rightarrow  \, \cos(\vec u \mbox{^} \vec v)=-1 \, \Rightarrow \, \vec  u \cdot \vec v = - \|\vec u\| . \|\vec v\|\).
\(\quad quad \vec u\) e \(\vec v\) colineares  com o sentidos contrários \(\Rightarrow \, \vec u \mbox{^} \vec v = 180º \, \Rightarrow  \, \cos(\vec u \mbox{^} \vec v)=-1 \, \Rightarrow \, \vec  u \cdot \vec v = - \|\vec u\| . \|\vec v\|\).
+
  
  
 
[[Category:Matemática]]
 
[[Category:Matemática]]

Revisão das 02h21min de 15 de janeiro de 2013

Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor



Produto escalar de dois vetores

Considerando \(\vec u\) e \(\vec v\) dois vetores, do plano ou do espaço, o produto escalar de \(\vec u\) e \(\vec v\) é o número representado por \(\vec u \cdot \vec v\) e definido como:

\[\vec u \cdot \vec v = \|\vec u\|.\|\vec v\|.\cos(\vec u \mbox{^} \vec v)\]


Nas coordenadas do vetores

Podemos também obter o produto escalar entre dois vetores através das coordenadas dos vetores. Vamos então considerar \(\vec u\) e \(\vec v\) dois vetores cujas coordenadas são, \(\vec u = (u_1,u_2)\) e \(\vec v = (v_1,v_2)\), no plano, ou \(\vec u = (u_1,u_2,u_3)\) e \(\vec v = (v_1,v_2,v_3)\) no espaço.

No plano esse produto escalar é dado pela soma do produto das abcissas com o produto das ordenadas da seguinte forma:

\[\vec u \cdot \vec v = (u_1,u_2).(v_1,v_2)=u_1.v_1+u_2.v_2\]

De forma semelhante podemos obter o prduto escalar através das coordenadas dos vetores no espaço:

\[\vec u \cdot \vec v = (u_1,u_2,u_3).(v_1,v_2,v_3)=u_1.v_1+u_2.v_2+u_3.v_3\]

Propriedades

Vamos agora ver algumas das propriedades do produto escalar entre dois vetores:

[1] Se \(\vec u\) e \(\vec v\) são dois vetores colineares podemos ter dois casos:


  • \(\vec u\) e \(\vec v\) têm o mesmo sentido então \(\vec u \cdot \vec v = \|\vec u\| . \|\vec v\|\) pois

\(\quad \quad \vec u\) e \(\vec v\) colineares com o mesmo sentido \(\Rightarrow \, \vec u \mbox{^} \vec v = 0º \, \Rightarrow \, \cos(\vec u \mbox{^} \vec v)=1 \, \Rightarrow \, \vec u \cdot \vec v = \|\vec u\| . \|\vec v\|\).

  • \(\vec u\) e \(\vec v\) têm sentido contrário então \(\vec u \cdot \vec v = - \|\vec u\| . \|\vec v\|\) pois

\(\quad \quad \vec u\) e \(\vec v\) colineares com o sentidos contrários \(\Rightarrow \, \vec u \mbox{^} \vec v = 180º \, \Rightarrow \, \cos(\vec u \mbox{^} \vec v)=-1 \, \Rightarrow \, \vec u \cdot \vec v = - \|\vec u\| . \|\vec v\|\).