Diferenças entre edições de "Ângulo (medidas)"
(→Ângulos orientados) |
(→Ângulos orientados) |
||
Linha 10: | Linha 10: | ||
Uma semi-reta de origem O, pertencente a um dado plano, pode mover-se nesse plano rodando em torno de O em dois sentidos: ou no sentido contrário ao do movimento dos ponteiros do relógio que será o '''sentido positivo''', ou no sentido oposto, '''sentido negativo'''. | Uma semi-reta de origem O, pertencente a um dado plano, pode mover-se nesse plano rodando em torno de O em dois sentidos: ou no sentido contrário ao do movimento dos ponteiros do relógio que será o '''sentido positivo''', ou no sentido oposto, '''sentido negativo'''. | ||
− | quando a semi-reta partindo da posição a, roda em torno da origem O acabando por ocupar a posição b, diz-se que descreveu o ângulo ∠a,b. À semi-reta a chamamos ''lado origem'' e à semi-reta b ''lado extremidade''. O ponto O é o ''vértice'' do ângulo. | + | quando a semi-reta partindo da posição a, roda em torno da origem O acabando por ocupar a posição b, diz-se que descreveu o ângulo ∠a,b. À semi-reta a chamamos <u>''lado origem''</u> e à semi-reta b <u>''lado extremidade''</u>. O ponto O é o <u>''vértice''</u> do ângulo. |
=Sistema sexagesimal= | =Sistema sexagesimal= |
Revisão das 13h03min de 17 de fevereiro de 2013
Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor
Índice[esconder] |
Ângulos orientados
Noção de ângulo
Uma semi-reta de origem O, pertencente a um dado plano, pode mover-se nesse plano rodando em torno de O em dois sentidos: ou no sentido contrário ao do movimento dos ponteiros do relógio que será o sentido positivo, ou no sentido oposto, sentido negativo. quando a semi-reta partindo da posição a, roda em torno da origem O acabando por ocupar a posição b, diz-se que descreveu o ângulo ∠a,b. À semi-reta a chamamos lado origem e à semi-reta b lado extremidade. O ponto O é o vértice do ângulo.
Sistema sexagesimal
Sistema centesimal
Sistema circular
Passagem de um sistema de unidades para outro
Notas históricas
Referências
- J. Jorge G. Calado (1974) "Compêndio de Trigonometria" 4ªedição. Liv. Popular de Francisco Franco, Lisboa.
- Elemento 2
- Elemento 3