Diferenças entre edições de "Equações da reta"
(→Equação cartesiana) |
(→Reta ortogonal a um vetor) |
||
Linha 9: | Linha 9: | ||
__TOC__ | __TOC__ | ||
− | =Reta | + | =Reta perpendicular a um vetor= |
==Equação cartesiana== | ==Equação cartesiana== | ||
− | Considerando dois vetores \(\vec u\) e \(\vec x\), com \(\vec u \neq 0\), a equação em \(\vec x\), \(\vec u \cdot \vec x =0\) representa o conjunto de todos os vetores \(\vec x\) que são ortogonais a \(\vec u\). Temos então dois casos: | + | |
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | Considerando dois vetores \(\vec u\) e \(\vec x\), com \(\vec u \neq 0\), a equação em \(\vec x\), \(\vec u \cdot \vec x =0\) representa o conjunto de todos os vetores \(\vec x\) que são ortogonais a \(\vec u\). Temos então dois casos: | ||
*'''No plano''', a equação \(\vec u \cdot \vec x =0\) representa a reta vetorial (isto é, que passa na origem) ortogonal a \(\vec u\). Se \(\vec u =(a,b)\) e \(\vec x =(x,y)\), \(\vec u \cdot \vec x = (a,b) \cdot (x,y)= ax +by\), e então a equação escreve-se da forma, | *'''No plano''', a equação \(\vec u \cdot \vec x =0\) representa a reta vetorial (isto é, que passa na origem) ortogonal a \(\vec u\). Se \(\vec u =(a,b)\) e \(\vec x =(x,y)\), \(\vec u \cdot \vec x = (a,b) \cdot (x,y)= ax +by\), e então a equação escreve-se da forma, | ||
Linha 35: | Linha 38: | ||
* \(2x-y=0\) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(2,-1)\). | * \(2x-y=0\) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(2,-1)\). | ||
* \(-x+3y+5=0\) é a equação do plano vetorial ortogonal ao vetor \(\vec u =(-1,3,5)\). | * \(-x+3y+5=0\) é a equação do plano vetorial ortogonal ao vetor \(\vec u =(-1,3,5)\). | ||
− | * \(3x-4z=0\) (em \(\mathbb{R}^3\)) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(3,0,-4)\). Esta reta está contida no plano \(y=0\), ou seja no plano \(xOz\). | + | * \(3x-4z=0\) (em \(\mathbb{R}^3\)) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(3,0,-4)\). Esta reta está contida no plano \(y=0\), ou seja no plano \(xOz\). |
+ | || | ||
+ | Aplicação | ||
+ | Como calcular a equação cartesiana da reta que passa em \(A=(-1,2)\) e é perpendicular ao vetor \(\vec u=(3,4)\)? | ||
+ | |||
+ | Consideramos \(P=(x,y)\) um ponto genérico dessa reta, então o vetor \(\overrightarrow{AP}=P-A=(x,y)-(-1,2)=(x+1,y-2)\) é ortogonal ao vetor \(\vec u\). Portanto, \(\overrightarrow{AP} \cdot \vec u=0\), isto é, | ||
+ | |||
+ | \((x+1,y-2) \cdot (3,4)=0 \, \Longleftrightarrow \, 3(x+1)+4(y-2)=0 \, \Longleftrightarrow \, 3x+4y=5\). | ||
+ | |} | ||
Linha 64: | Linha 75: | ||
<span style="color:#FFD700">'''''(Colocar Applet)'''''</span> | <span style="color:#FFD700">'''''(Colocar Applet)'''''</span> | ||
− | |||
=Reta que passa por dois pontos= | =Reta que passa por dois pontos= |
Revisão das 23h29min de 4 de fevereiro de 2013
Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor
Índice |
Reta perpendicular a um vetor
Equação cartesiana
Considerando dois vetores \(\vec u\) e \(\vec x\), com \(\vec u \neq 0\), a equação em \(\vec x\), \(\vec u \cdot \vec x =0\) representa o conjunto de todos os vetores \(\vec x\) que são ortogonais a \(\vec u\). Temos então dois casos:
\(\qquad\)e diz-se a equação cartesiana da reta referida.
\(\qquad\)e diz-se a equação cartesiana do plano referido.
|
Aplicação Como calcular a equação cartesiana da reta que passa em \(A=(-1,2)\) e é perpendicular ao vetor \(\vec u=(3,4)\)? Consideramos \(P=(x,y)\) um ponto genérico dessa reta, então o vetor \(\overrightarrow{AP}=P-A=(x,y)-(-1,2)=(x+1,y-2)\) é ortogonal ao vetor \(\vec u\). Portanto, \(\overrightarrow{AP} \cdot \vec u=0\), isto é, \((x+1,y-2) \cdot (3,4)=0 \, \Longleftrightarrow \, 3(x+1)+4(y-2)=0 \, \Longleftrightarrow \, 3x+4y=5\). |
Equação vetorial
Considerando a mesma reta, \(\vec u \cdot \vec x =0\), vejamos que o vetor \(\vec v=(-b,a)\) pertence à reta uma vez que \(\vec u \cdot \vec v=(a,b) \cdot (-b,a)= -ab+ba=0\). Portanto a reta é também o conjunto de todos os vetores \(\vec x\) que são múltiplos escalares do vetor \(\vec v\). Isto é,
\[ax+by=0 \, \Longleftrightarrow\] | \[\,\{\vec x \in \mathbb{R}^2: \vec x=t(-b,a), \quad t \in \mathbb{R}\}\] |
---|
A equação \(\vec x=t \vec v\) diz-se equação vetorial da reta referida.
Equações paramétricas
Se \(\vec x =(x,y)\), como \(\vec v=(-b,a)\), então \(\vec x=t \vec v \, \Leftrightarrow \, (x,y)=t(-b,a) \, \Leftrightarrow \, x=-tb \wedge y=ta\), sendo que assim a equação vetorial é equivalente às duas equações seguintes:
\[ \left\{\begin{array}{ll} x=-tb & \\ & , t \in \mathbb{R} \\ y=ta & \end{array} \right.\] |
---|
Que se dizem equações paramétricas da reta referida. Quando o "tempo" \(t\) varia, elas representam o movimento de um ponto (partícula) que se desloca sobre a reta com movimento uniforme de vetor-velocidade \(\vec v=(-b,a)\) e velocidade (escalar) \(v=\|\vec v\|=\sqrt{a^2+b^2}\).
(Colocar Applet)
Reta que passa por dois pontos
Equação vetorial
Pretendemos agora determinar a equação de uma reta que passa em dois pontos distintos. Temos então dois casos:
No plano, sejam \(A=(x_A,y_A)\) e \(B=(x_B,y_B)\) esses dois pontos, queremos então determinar a equação da reta que passa por \(A\) e é paralela ao vetor \(\overrightarrow{AB}\). Se \(P=(x,y)\) é um ponto genérico dessa reta temos que,
\[P=A+t\overrightarrow{AB}\, , \quad t \in \mathbb{R}\] |
---|
que é chamada a equação vetorial da reta. Em coordenadas, \((x,y)=(x_A,y_A)+t(x_B-x_A,y_B-y_A) \, , \quad t \in \mathbb{R}\).
No espaço, considerando \(A=(x_A,y_A,z_A)\) e \(B=(x_B,y_B,z_B)\) os dois pontos pelos quais passa a reta a sua equação vetorial é:
\[(x,y,z)=(x_A,y_A,z_A)+t(x_B-x_A,y_B-y_A,z_B-z_A) \, , \quad t \in \mathbb{R}\].
Equações paramétricas
Das equações vetoriais da reta anteriores podemos obter as equações paramétricas. Para o caso em que \(A\) e \(B\) são pontos em \(\mathbb{R}^2\) a equação vetorial da reta é equivalente a \(x=x_A+t(x_b-x_A) \, \wedge \, y=y_A+t(y_B-y_A)\), ou num sistema:
\[ \left\{\begin{array}{ll} x=x_A+t(x_b-x_A) & \\ & , t \in \mathbb{R} \\ y=y_A+t(y_B-y_A) & \end{array} \right.\] |
---|
Para o caso em que \(A\) e \(B\) são pontos em \(\mathbb{R}^3\) a equação vetorial da reta é equivalente a \(x=x_A+t(x_b-x_A) \, \wedge \, y=y_A+t(y_B-y_A) \, \wedge \, z=z_A+t(z_B-z_A)\), ou num sistema, considerando \(t \in \mathbb{R}\):
\[ \left\{\begin{array}{l} x=x_A+t(x_B-x_A) \\ y=y_A+t(y_B-y_A) \\ z=z_A+t(z_B-z_A) \end{array} \right.\] |
---|
Equação cartesiana
Simplificando os sistemas anteriores e eliminando o parâmetro \(t\), obtemos do primeiro sistema a equação cartesiana da reta no plano, que passa pelos pontos \(A=(x_A,y_A)\) e \(B=(x_B,y_B)\):
\[(y_B-y_A)(x-x_A)=(y-y_A)(x_B-x_A)\] |
---|
- Se \(x_B-x_A=0\), então \(y_B-y_A \neq 0\), pois os dois pontos são distintos, e a reta é uma reta vertical de equação \(x=x_A\).
- Se \(y_B-y_A=0\), então \(x_B-x_A \neq 0\), pois os dois pontos são distintos, e a reta é uma reta horizontal de equação \(y=y_A\).
- Se \(x_B-x_A \neq 0\) e \(y_B-y_A \neq 0\), a reta tem por equação:
\[y=y_A+\frac{(y_B-y_A)}{(x_B-x_A)}(x-x_A)\]
Do segundo sistema obtemos a equação cartesiana da reta que passa em \(A\) e \(B\) no espaço, com \(A, B \in \mathbb{R}^3\).
\[\frac{(x-x_A)}{(x_B-x_A}=\frac{(y-y_A)}{(y_B-y_A}=\frac{(z-z_A)}{(z_B-z_A)}\] |
---|