Diferenças entre edições de "Equações da reta"
Linha 34: | Linha 34: | ||
* \(-x+3y+5=0\) é a equação do plano vetorial ortogonal ao vetor \(\vec u =(-1,3,5)\). | * \(-x+3y+5=0\) é a equação do plano vetorial ortogonal ao vetor \(\vec u =(-1,3,5)\). | ||
* \(3x-4z=0\) (em \(\mathbb{R}^3\)) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(3,0,-4)\). Esta reta está contida no plano \(y=0\), ou seja no plano \(xOz\). | * \(3x-4z=0\) (em \(\mathbb{R}^3\)) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(3,0,-4)\). Esta reta está contida no plano \(y=0\), ou seja no plano \(xOz\). | ||
− | |||
− | |||
Linha 44: | Linha 42: | ||
{| border="0" style="text-align: center;" align="center" | {| border="0" style="text-align: center;" align="center" | ||
|- | |- | ||
− | | \[ax+by=0 \, \ | + | | \[ax+by=0 \, \Longleftrightarrow\] |
! style="background: #efefef;" | \[\,\{\vec x \in \mathbb{R}^2: \vec x=t(-b,a), \quad t \in \mathbb{R}\}\] | ! style="background: #efefef;" | \[\,\{\vec x \in \mathbb{R}^2: \vec x=t(-b,a), \quad t \in \mathbb{R}\}\] | ||
|} | |} | ||
A equação \(\vec x=t \vec v\) diz-se <span style="color:red">'''equação vetorial'''</span> da reta referida. | A equação \(\vec x=t \vec v\) diz-se <span style="color:red">'''equação vetorial'''</span> da reta referida. | ||
− | |||
==Equações paramétricas== | ==Equações paramétricas== | ||
+ | |||
+ | Se \(\vec x =(x,y)\), como \(\vec v=(-b,a)\), então \(\vec x=t \vec v \, \Leftrightarrow \, (x,y)=t(-b,a) \, \Leftrightarrow \, x=-tb \wedge y=ta\), sendo que assim a equação vetorial é equivalente às duas equações seguintes: | ||
+ | |||
+ | |||
+ | \[\left{\begin{array}{ll} | ||
+ | x=-tb & \\ | ||
+ | y=ta & \end{array} \right.\] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | [[Category:Matemática]] |
Revisão das 21h51min de 4 de fevereiro de 2013
Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor
Índice |
Equação cartesiana
Considerando dois vetores \(\vec u\) e \(\vec x\), com \(\vec u \neq 0\), a equação em \(\vec x\), \(\vec u \cdot \vec x =0\) representa o conjunto de todos os vetores \(\vec x\) que são ortogonais a \(\vec u\). Temos então dois casos:
- No plano, a equação \(\vec u \cdot \vec x =0\) representa a reta vetorial (isto é, que passa na origem) ortogonal a \(\vec u\). Se \(\vec u =(a,b)\) e \(\vec x =(x,y)\), \(\vec u \cdot \vec x = (a,b) \cdot (x,y)= ax +by\), e então a equação escreve-se da forma,
\[ax + by=0\] |
---|
\(\qquad\)e diz-se a equação cartesiana da reta referida.
- No espaço, a equação \(\vec u \cdot \vec x =0\) representa o plano vetorial (isto é, que passa na origem) ortogonal a \(\vec u\). Se \(\vec u =(a,b,c)\) e \(\vec x =(x,y,z)\), \(\vec u \cdot \vec x = (a,b,c) \cdot (x,y,z)= ax+by+cz\), e então a equação escreve-se da forma,
\[ax + by + cz=0\] |
---|
\(\qquad\)e diz-se a equação cartesiana do plano referido.
Exemplos
- \(2x-y=0\) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(2,-1)\).
- \(-x+3y+5=0\) é a equação do plano vetorial ortogonal ao vetor \(\vec u =(-1,3,5)\).
- \(3x-4z=0\) (em \(\mathbb{R}^3\)) é a equação da reta vetorial ortogonal ao vetor \(\vec u =(3,0,-4)\). Esta reta está contida no plano \(y=0\), ou seja no plano \(xOz\).
Equação vetorial
Considerando a mesma reta, \(\vec u \cdot \vec x =0\), vejamos que o vetor \(\vec v=(-b,a)\) pertence à reta uma vez que \(\vec u \cdot \vec v=(a,b) \cdot (-b,a)= -ab+ba=0\). Portanto a reta é também o conjunto de todos os vetores \(\vec x\) que são múltiplos escalares do vetor \(\vec v\). Isto é,
\[ax+by=0 \, \Longleftrightarrow\] | \[\,\{\vec x \in \mathbb{R}^2: \vec x=t(-b,a), \quad t \in \mathbb{R}\}\] |
---|
A equação \(\vec x=t \vec v\) diz-se equação vetorial da reta referida.
Equações paramétricas
Se \(\vec x =(x,y)\), como \(\vec v=(-b,a)\), então \(\vec x=t \vec v \, \Leftrightarrow \, (x,y)=t(-b,a) \, \Leftrightarrow \, x=-tb \wedge y=ta\), sendo que assim a equação vetorial é equivalente às duas equações seguintes:
\[\left{\begin{array}{ll}
x=-tb & \\
y=ta & \end{array} \right.\]