Equilíbrio vapor-líquido num sistema aberto

Da WikiCiências
Share/Save/Bookmark
Ir para: navegação, pesquisa

Referência : Lage, E., (2019) Equilíbrio vapor-líquido num sistema aberto, Rev. Ciência Elem., V7(3):062
Autor: Eduardo Lage
Editor: José Ferreira Gomes
DOI: [http://doi.org/10.24927/rce2019.062]
PDF Download


Todas as substâncias apresentam fases termodinâmicas distintas dependentes das condições externas a que estejam submetidas. As transições mais vulgares são as sólido-fluido (fusão) ou vapor-líquido (condensação) determinadas pela temperatura ou pressão. Qualquer transição de fase é um fenómeno cooperativo, o resultado de uma enorme quantidade de partículas (átomos ou moléculas) em interação. É, pois, um fenómeno emergente da competição entre a agitação térmica que tende a dispersar as partículas e a parte atrativa do potencial entre as partículas que tende a aglutiná-las.


Na referência 1, considerou-se o fluido como um sistema termodinâmico fechado (i.e., número fixo de partículas), submetido a uma pressão exterior constante, ficando indefinido o volume ocupado pelo fluido, mas que vem a ser determinado pelas condições de equilíbrio, tendo-se mostrado que a transição de fase corresponde à coexistência de duas soluções para o volume, as quais coalescem no ponto crítico. Aqui é apresentada uma outra descrição que, embora gerando os mesmos resultados que a anterior, é, contudo, suscetível de importantes generalizações que a primeira não consegue.

Esta nova descrição considera o sistema termodinamicamente aberto (i.e., número variável de partículas), ocupando um volume \(V\) fixo e em contacto com uma fonte de partículas que fixa o potencial químico exterior \((\mu _{0})\). É mostrado no Apêndice (ver eq. (A11)) que a função termodinâmica que define o equilíbrio, para volume unitário, é:


\(\psi (T,\mu _{0};n)\equiv f(T,n)-\mu _{0}n\) (1)


onde \(f(T,n)\) é a densidade volúmica de energia livre (de Helmholtz) do fluido e é a densidade (número de partículas por unidade de volume). Embora sejam aqui usadas as mesmas letras para funções termodinâmicas como as usadas na referência 1, deve sublinhar-se que são funções diferentes com distintos significados físicos. É esta função que determina a densidade (ou densidades) no equilíbrio com a fonte de partículas como mínimo absoluto da função \(\Psi \). Assim:


\(\frac{\partial \psi }{\partial n}=0\Leftrightarrow \frac{\partial f}{\partial n}\equiv (T,n)=\mu _{0}\) (2)


\(\frac{\partial ^{2}\psi }{\partial n^{2}}\geq 0\Leftrightarrow \frac{\partial ^{2}f}{\partial n^{2}}=\frac{\partial \mu }{\partial n}\geq 0\) (3)


Aqui, \(\mu (T,n)\) é, por definição, o potencial químico do fluido: a condição de equilíbrio expressa pela eq. (2) desempenha, no sistema aberto, o mesmo papel que a igualdade de pressões obtida na referência 1. Adicionalmente, o mínimo absoluto de \(\psi \) é, simplesmente, o negativo da pressão exercida pelo fluido, como se mostra no Apêndice (eq. (A12)):

\(\psi _{min}=-p\) (4)


Figura 1. Isotérmicas do dióxido de carbono.

A Figura 1 exibe as isotérmicas \(p(n,T)\) para o dióxido de carbono, um exemplo do comportamento típico de muitos outros fluidos. Esta figura não é mais do que a Figura 1 na referência 1, mas onde, agora, o eixo horizontal representa a densidade. O ponto crítico é, aqui, definido pelas condições:


\(\left ( \frac{\partial p}{\partial n} \right )_{T_{c},n_{c}}=\left ( \frac{\partial ^{2}p}{\partial n^{2}} \right )_{T_{c},n_{c}}=0\) (5)


Facilmente se reconhece que são as mesmas condições invocadas na referência 1. Há várias observações a salientar nesta figura.

  • Para baixas densidades e pressões e altas temperaturas \((T\gg T_{c})\), as curvas aproximam-se da equação dos gases ideais, i.e.,\(p=knT\), onde \(k\) é a constante de Boltzmann.

  • Seguindo uma isotérmica acima da crítica, a pressão, para densidades elevadas, é menor que a prevista para gases ideais; tal resulta da parte atrativa do potencial entre partículas, como já foi referido na referência 2.

  • Esta curvatura negativa (i.e., para baixo) é tanto mais pronunciada quanto menor for a temperatura considerada: menores temperaturas significam menores energias cinéticas médias das partículas, i.e., menores velocidades térmicas, levando as partículas a experimentarem durante mais tempo a referida parte atrativa do potencial.

  • A isotérmica crítica (notada por \(T_{c}\), na figura) separa dois regimes: para temperaturas superiores, o fluido é um gás, enquanto que para temperaturas inferiores o fluido separa-se nas fases de vapor e líquida como é caracterizado, na figura, pela linha vermelha, limite dos patamares horizontais das isotérmicas.

  • Abaixo da isotérmica crítica e na fase líquida, a pressão aumenta muito rapidamente com a densidade como consequência da parte fortemente repulsiva do potencial.

No que se segue, iremos, apenas, analisar o comportamento do fluido nas vizinhanças do seu ponto crítico, o qual é definido por \(T=T_{c},p=p_{c},n=n_{c}\). Mais precisamente, exigiremos \(\left | \theta \right |\ll T_{c}\) e \(\left | n' \right |\ll n_{c}\), onde \(\theta \equiv T-T_{c}\) e \(n'\equiv n-n_{c}\) medem desvios em relação ao ponto crítico. A exposição aqui seguida é conhecida por teoria de Landau[1], [2], reencontrando-se, sob outra forma, os resultados obtidos na referência 1.

No Apêndice mostra-se que as condições impostas pelo ponto crítico, eqs.(5), podem reescrever-se, para um sistema aberto sob a forma:


\(\left ( \frac{\partial \mu }{\partial n} \right )_{T_{c},n_{c}}=\left ( \frac{\partial ^{2}\mu }{\partial n^{2}} \right )_{T_{c},n_{c}}=0\) (6)


Então, para a isotérmica crítica e nas vizinhanças do ponto crítico, tem-se:


\(\mu (T_{c},n)=\mu _{c}+Cn'^{3}+...\)


onde \(\mu _{c}\equiv (T_{c},n_{c})\) é o potencial químico no ponto crítico e \(C\) é uma constante que se mostrará a seguir ser positiva. Com efeito, no Apêndice, é demonstrada a relação genérica (ver eq. (A6)):

\(\frac{\partial p}{\partial n}=n\frac{\partial \mu }{\partial n}\) (7)


Então, para a isotérmica crítica e nas vizinhanças do ponto crítico:


\(\left ( \frac{\partial p}{\partial n} \right )_{T_{c}}\cong n_{c}\left ( \frac{\partial \mu }{\partial n} \right )_{T_{c}}=3Cn_{c}n'^{2}\)


Ora, observando a Figura 1, vemos que \(\left ( \frac{\partial p}{\partial n} \right )_{T_{c}}\geq 0\) porque \(p(T_{c},n)\) é sempre não decrescente (a sua derivada só se anula no ponto crítico). Assim, é \(C>0\).


Consideremos uma outra isotérmica \(0\neq 0\). Agora, já deverão surgir termos lineares e quadráticos na expansão de \(\mu (T,n)\), os quais se devem anular para \(0\neq 0\). Assim, esperamos que aquela expansão tenha a forma:


\(\mu (T,n)=\mu _{c}+A\theta n'-B\theta n'^{2}+Cn'^{3}\) (8)


onde \(A\) e \(B\) são constantes positivas porque para \(\theta >0\) as isotérmicas apresentam \(p(T,n)\) a crescerem com a densidade, mas com curvatura negativa, obtendo-se o resultado por aplicação da eq. (7). Invocando a definição do potencial químico, encontramos a expansão para a energia livre:


\(\left ( \frac{\partial f}{\partial n} \right )_{T}=\mu (T,n)\rightarrow f(T,n)=f(T,n_{c})+\int_{n_{c}}^{n}dn_{1}\mu (T,n_{1})\)


Usando a eq. (8), tem-se:


\(\left ( \frac{\partial f}{\partial n} \right )_{T}=\mu (T,n)\rightarrow f(T,n)=f(T,n_{c})+\int_{n_{c}}^{n}dn_{1}\mu (T,n_{1})\) (9)


O termo cúbico pode ser eliminado com a seguinte mudança de variável:


\(n'=\frac{B\theta }{3C}+\phi \) (10)


obtendo-se:


\(f(T,n)=f(T,n_{c})+\mu _{c}\frac{B\theta }{3C}+\left ( \mu _{c}+\frac{AB\theta ^{2}}{3C} \right )\phi +\frac{A\theta }{2}\phi ^{2}+\frac{C}{4}\phi ^{4}\) (11)


tendo-se mantido, apenas, os termos de menor ordem em \(\theta \). Inserindo na eq. (1), tem-se finalmente, a função que determina o equilíbrio e que escreveremos sob forma:


\(\psi (T,\mu _{0};n)=f(T,n_{c})-\mu _{0}n_{c}-(\mu _{0}-\mu _{c})\frac{B\theta }{3C}+g(h,\phi )\) (12)


onde:


\(g(h,\phi )\equiv -h\phi +\frac{A\theta }{2}\phi ^{2}+\frac{C\phi ^{4}}{4}\) (13)


é a função de Landau[3], com:


\(h=\mu _{0}-\mu _{c}-\frac{AB\theta ^{2}}{3C}\) (14)


A procura dos mínimos de \(\psi \) em ordem à densidade é equivalente à procura dos mínimos da função de Landau[4] em ordem a \(\phi \), desempenhando o "campo" \(h\) o papel de parâmetro de controle em vez do potencial químico da fonte. A função de Landau está graficamente representada na Figura 4 e da referência 1 e, realmente, a discussão aí efetuada sobre os mínimos de \(g(h,\phi) \) pode ser totalmente recuperada no presente contexto. A principal diferença está no significado do mínimo absoluto de \(\psi \) que, aqui, é o negativo da pressão (ver eq. (4)). Este resultado permite-nos dar uma outra forma aos resultados anteriores. Com efeito, conhecemos a solução no ponto crítico (\(\theta =0;\mu _{0}=\mu _{c};n=n_{c})\) ou \(\phi =0 \)) e sabemos que aí a pressão é \(p_{c}\). Assim a eq. (12) neste caso particular, fica:


\(-p_{c}=\psi (T_{c},\mu _{c};n_{c})=f(T_{c},n_{c})-\mu _{c}n_{c}\)


Subtraindo este resultado à eq. (12), podemos escrever:


\(p_{c}-p=f(T,n_{c})-f(T_{c},n_{c})-(\mu _{0}-\mu _{c})\left ( n_{c}+\frac{B\theta }{3C} \right )+min\left [ g(h,\phi ) \right ]\)


Ora sendo \(T\approx T_{c}\), então a diferença das energia livres dá (ver eq. (A4) no Apêndice):


\(f(T,n_{c})-f(T_{c}n_{c})\cong -s(T_{c}n_{c})\theta \)


onde \(s(T_{c},n_{c})\) é a densidade volúmica de entropia no ponto crítico. Substituindo na expressão anterior, obtemos finalmente:


\(p_{c}-p=-s(T_{c},n_{c})\theta -(\mu _{0}-\mu _{c})\left ( n_{c}+\frac{B\theta }{3C} \right )+min[g(h,\phi )]\) (15)


Assim, para cada temperatura \(\theta \), o "campo" \(h\) determina o valor de \(\phi \), i.e., da densidade, que minimiza a função de Landau e o valor da função no mínimo define a pressão correspondente pela equação anterior. Em particular, para \(\theta <0\) e \(h=0\) surgem dois mínimos em \(\phi =\underline{+}\overline{\phi }\) com \(\overline{\phi }=\sqrt{\frac{A\left | \vartheta \right |}{C}}\) (ver Figura 4 da referência 1), gerando o mesmo valor da pressão – trata-se do equilíbrio das fases líquida \((+\overline{\phi })\) e vapor \((-\overline{\phi })\). Não iremos avançar com esta análise porque são reproduzidos todos os resultados encontrados na referência 1.


Generalizações

A formulação aqui apresentada, baseada no sistema aberto, é suscetível de várias importantes generalizações dificilmente implementáveis se usássemos o sistema fechado como na referência 1.

Um primeiro exemplo considera dois (ou mais) fluidos com temperaturas críticas muito próximas e que interagem quando misturados. A função termodinâmica que determina o equilíbrio é uma simples generalização da eq.(1):


\(\psi (T,\mu _{01},\mu _{02};n_{1},n_{2})=f_{1}(T,n_{1})-\mu _{01}n_{1}+f_{1}(T,n_{2})-\mu _{02}n_{2}+kn_{1}n_{2}\)


O último termo no 2º membro representa uma interação binária entre os dois fluidos, a qual pode ser repulsiva \((k>0)\) ou atrativa \((k<0)\). Como consequência desta interação, a mistura apresenta uma temperatura crítica mais elevada do que a dos seus componentes e na fase de coexistência poderão surgir comportamentos muito diferentes consoante o sinal de \(k\). O valor mínimo de \(\psi \) continua a ser o negativo da pressão exercida pela mistura. Não prosseguiremos aqui esta generalização.

Um segundo exemplo procura responder à questão: como se distribuem espacialmente as fases líquida e vapor quando coexistem em equilíbrio? É bem conhecido que, por exemplo, um campo gravítico, por pequeno que seja, determina a localização do líquido “em baixo” (menor potencial gravítico) e do vapor “em cima” (maior potencial gravítico) conseguindo, dessa forma, minimizar a energia porque o líquido é mais denso que o vapor, embora haja um aumento da energia livre de todo o fluido porque na região da transição de líquido para vapor a densidade tem de variar continuamente, i.e., existe um gradiente de densidade. É esta zona de transição que agora se pretende estudar e o termo mais simples a incluir na densidade de energia livre é \(\frac{1}{2}\alpha \left ( \frac{d\phi }{dz} \right )^{2}\), onde \(\alpha \) é uma constante positiva, não existindo termo linear por simetria. Temos, assim, que a energia livre de todo o fluido, ignorando termos independentes da densidade, é , por unidade de área do plano \(xy\)


\(F[\phi ]=\int_{-\infty }^{+\infty }dz\left [ g(0,\phi )+\frac{1}{2}\alpha \left ( \frac{d\phi }{dz} \right )^{2} \right ]\)


(Esta expressão \(F[\phi ]\) designa-se por funcional: é uma função de função. Para uma qualquer função \(\phi \left [ z \right ]\), \(F\left [ \phi \right ]\) é um número.).

Aqui, \(g(0,\phi )\) é a função de Landau definida na eq.(13) para \(h=0\) e \(\theta <0\), as duas condições que definem a coexistência de uma fase liquida (densidade \(\phi\)), com uma fase de vapor (densidade \(-\overline{\phi }\)). O objetivo é determinar a função \(\phi(z)\) que minimiza \(F[\overline{\phi }]\), sujeita às condições-fronteira:


\(\phi (z)\xrightarrow[z\rightarrow -\infty ]{ }+\overline{\phi }\)


\(\phi (z)\xrightarrow[z\rightarrow +\infty ]{ }-\overline{\phi }\)


Se \(\phi(z)\) é a solução, então qualquer acréscimo à função deve não diminuir \(F[\phi ]\). Assim, para um acréscimo muito pequeno \(\delta \phi \) a função \(\phi (z)+\delta \phi (z)\), satisfazendo às mesmas condições-fronteira (pelo que \(\delta \phi (z)\xrightarrow[z\rightarrow \underline{+}\infty ]{ }0\)) deve obrigar \(F[\phi +\delta \phi ]-F[\phi ]\) a não ter termos lineares no acréscimo, tal como no desenvolvimento de uma função junto a um mínimo não tem termos lineares. Ora:


\(F[\phi +\delta \phi ]-F[\phi ]=\int_{-\infty }^{+\infty }dz\left [ g(0,\phi +\delta \phi )-g(0,\phi )+\frac{\alpha }{2}\left ( \left ( \frac{d}{dz}(\phi +\delta \phi ) \right )^{2} -\left ( \frac{d\phi }{dz} \right )^{2}\right ) \right ]=\)

\(=\int_{-\infty }^{+\infty }dz\left [ \frac{\partial g(0,\phi)}{\partial \phi }\delta \phi (z)+\alpha \frac{d\phi }{dz}\frac{d\delta \phi }{dz} \right ]\)


onde se ignoraram termos quadráticos ou superiores no acréscimo. Integrando por partes o último termo e lembrando que o acréscimo se anula nos limites, obtemos:


\(F[\phi +\delta \phi ]-F[\phi ]=\int_{-\infty }^{-\infty }dz\left [ \frac{\partial g(0,\phi )}{\partial \phi }-\alpha \frac{d^{2}\phi }{dz^{2}} \right ]\delta \phi (z)\)


Este acréscimo da energia livre deverá ser nulo qualquer que seja \(\delta \phi (z)\). Obtemos, assim, a quação para o perfil de densidade:


\(\alpha \frac{d^{2}\phi }{dz^{2}}=\frac{\partial g(0,\phi )}{\partial \phi }=-A\left | \theta \right |\phi +C\phi ^{3}=C(-\overline{\phi }^{2}\phi +\phi ^{3})\)


A solução satisfazendo às condições-fronteira é:


\(\phi (z)=-\overline{\phi }th\left ( \frac{z-z_{0}}{\xi } \right )\)



Figura 2. Perfis de densidade na transição líquido-vapor para \(\overline{\phi }=1\) (a azul) e \(\overline{\phi }=0\) (a vermelho).

onde \(z_{0}\) é arbitrário e \(\xi =\frac{1}{\overline{\phi }}\sqrt{\frac{2\alpha }{C}}\). Este perfil está representado na Figura 2: a transição líquido para vapor efetua-se numa distância \(\xi \), em geral muito pequena, mas que diverge junto ao ponto crítico, onde, contudo, também se anula a amplitude do perfil (na figura, \(\overline{\phi }=1\) na curv azul e \(\overline{\phi }=0,1\) na curva vermelha). À medida que nos aproximamos do ponto crítico, a distinção líquido-vapor é cada vez mais ténue, ficando mais difícil estabelecer uma fronteira entre as duas fases.

Podemos, finalmente, obter o acréscimo na energia livre originada por este perfil de densidade. Para a unidade de área perpendicular ao gradiente, tem-se:


\(F[\phi (z)]-F[\overline{\phi }]=\int_{-\infty }^{+\infty }dz\left [ g(0,\phi (z))-g(0,\overline{\phi })+\frac{\alpha }{2}\left ( \frac{d\phi }{dz} \right )^{2} \right ]=\frac{2}{3}\sqrt{2\alpha \phi }^{3}\propto (T_{c}-T)^{\frac{3}{2}}\)


Esta energia livre adicional é a tensão superficial e o seu anulamento no ponto crítico é característico de transições de fase de 2ª ordem.


Apêndice: Cracterização temrodinâmica de um sistema aberto

Consideremos um sistema termodinâmico constituído por \(N\) partículas da mesma espécie química ocupando um volume \(V\) e em equilíbrio térmico com uma fonte de calor à temperatura \(T\). A função termodinâmica apropriada para caracterizar este sistema é a energia livre de Helmholtz[5], \(F(T,V,N)\), cuja diferencial é:


\(dF=-SdT-pdV+\mu dN\) (A1)


Aqui, \(S\) é a entropia, \(p\) pressão e \(\mu \) o potencial química. A energia livre é uma função extensiva pelo que, para qualquer \(x>0 \), é:


\(F(T,xV,xN)=xF(T,V,N)\)


Derivando em ordem a \(x\) e pondo \(x=1\), obtemos:


\(F(T,V,N)=-pV+\mu N\) (A2)


É útil definir a densidade volúmica de energia livre:


\(f(T,n)\equiv \frac{F}{V}=-p+\mu n\) (A3)


onde \(n=\frac{N}{V}\) é a densidade (número de partículas por unidade de volume). Qual a diferencial desta função? Como \(F=Vf\), basta considerar \(V=\) constante e usar a eq. (A1), obtendo-se:


\(Vdf=-SdT+ \mu Vdn\rightarrow df= -sdT+ \mu dn\) (A4)


Aqui, \(s\equiv \frac{S}{V}\) é é a densidade volúmica de entropia. Ora, diferenciando a eq. (B3) e comparando com a eq. (A4), tem-se:


\(dp=-sdT+nd\mu\) (A5)

Esta expressão é conhecida por relação de Gibbs-Duhem. Dela decorre a expressão genérica:


\(\left ( \frac{\partial p}{\partial n} \right )_{T}=n\left ( \frac{\partial \mu }{\partial n} \right )_{T}\) (A6)


Segue-se que no ponto crítico, onde se verificam as condições (A5), é:


\left ( \frac{\partial p}{\partial n} \right )_{T_{c},n_{c}}=0\rightarrow \left ( \frac{\partial \mu }{\partial n} \right )_{T_{c},n_{c}}=0 (A7)


Derivando a eq. (A6) em ordem à densidade, tem-se:


\(\left ( \frac{\partial ^{2}p}{\partial n^{2}} \right )_{T}=\left ( \frac{\partial \mu }{\partial n} \right )_{T}+n\left ( \frac{\partial ^{2}\mu }{\partial n^{2}} \right )_{T}\)


Então, no ponto crítico:


\(\left ( \frac{\partial ^{2}p}{\partial n^{2}} \right )_{T_{c},n_{c}}=0=\left ( \frac{\partial \mu }{\partial n} \right )_{T_{c},n_{c}}+n_{c}\left ( \frac{\partial ^{2}\mu }{\partial n^{2}} \right )_{T_{c},n_{c}}\rightarrow \left ( \frac{\partial ^{2}\mu }{\partial n^{2}} \right )_{T_{c},n_{c}}=0\) (A8)


Finalmente consideremos a questão: qual a função termodinâmica que determina o estado de equilíbrio de um sistema aberto? Para isso, imaginemos que o nosso sistema pode trocar partículas com outro sistema, sendo constante o número de partículas do conjunto \((N_{0})\). Nestas condições, o equilíbrio é definido pelo mínimo (em relação a \(N\)) da função \(F(T,V,N)+F'(T,V',N')\) com \(N+N'=N_{0}\), onde \(F'\) é a energia livre do 2º sistema. Prescindindo de estudar o caso geral, consideremos, desde já, que este 2º sistema é muito maior que o sistema de interesse \((N'\gg N)\), mantendo-se sempre em equilíbrio independentemente do número de partículas trocadas. Nestas condições, este 2º sistema é designado por fonte de partículas e tem-se:


\(F'(T,V',N')=F'(T,V',N_{0}-N)\simeq F'(T,V',N_{0})-\mu _{0}N\)


onde \(\mu _{0}=\left ( \frac{\partial F'}{\partial N'} \right )_{N_{0}}\) é, pois, o potencial químico da fonte. Como \(F(T,V',N_{0})\) é independente de \(N\), o equilíbrio é, então, caracterizado pelo mínimo da função:


\(\Psi (T,\mu _{0};N)=F(T,V,N)-\mu _{0}N)\) (A9)


No mínimo deve ser:


\(\left ( \frac{\partial \Psi }{\partial N} \right )_{T,V,\mu _{0}}\rightarrow (T,n)=\mu _{0}\) (A10)


O equilíbrio é, pois, determinado pela igualdade dos potenciais químicos. Mas há outra condição de mínimo:


\(\left ( \frac{\partial ^{2}\Psi }{\partial N^{2}} \right )_{T,V,\mu _{0}}\geq 0\rightarrow \frac{\partial \mu (T,n)}{\partial n}\geq 0\)


relação conhecida por condição de estabilidade termodinâmica.

Uma vez estabelecido o equilíbrio, as eqs. (A9), (A10) e (A2) mostram que:


\(\Psi _{min}=-pV\)


Voltando ao sistema de interesse, como ovolume é mantido constante, usaremos a função:


\(\psi (T,\mu _{0};n)=\frac{\Psi }{V}=f(T,n)-\mu _{0}n\) (A11)


Esta função deve ser mínima no equilíbrio e o seu valor no mínimo é:


\(\\psi _{min}=-p\) (A12)

Referências

  1. LAGE, E., Introdução à Termodinâmica, Rev. Ciência Elem., V7(02):020; (2019). DOI: 10.24927/rce2019.020.
  2. LAGE, E., Equilíbrio vapor-líquido próximo do ponto crítico, Rev. Ciência Elem., V7(02):061; (2019). DOI: 10.24927/rce2019.061.
  3. LAGE, E., Fluídos, Rev. Ciência Elem., V6(4):071. (2019). DOI: 10.24927/rce2018.071.
  4. LANDAU L. D. & LIFSHITZ E. M., Elsevier Science & Technology. 1996.
  5. LAGE, E., Equilíbrio vapor-líquido próximo do ponto crítico, Rev. Ciência Elem., V7(02):061; (2019). DOI: 10.24927/rce2019.061.

            6. CHAIKIN, P.M. & LUBENSKY, T. C., Principies of condensed matter physics. Cambridge University Press, Cambridge, England. 1995



Criada em 28 de Janeiro de 2019
Revista em 25 de Maio de 2019
Aceite pelo editor em 16 de Outubro de 2019