Diferenças entre edições de "Referenciais"
(→Ortogonal e normado) |
(→Ortogonal e normado) |
||
Linha 61: | Linha 61: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
− | | <ggb_applet height="190" width=" | + | | <ggb_applet height="190" width="220" showResetIcon="true" filename="Refqualquer1.ggb" /> || Um referencial cartesiano pode ser '''qualquer''', neste caso temos uma origem e dois vetores unitários que definem dois eixos sem qualquer indicação específica da posição relativa desses eixos ou da norma dos vetores unitários. ''No applet para obter diferentes referenciais mova as extremidades dos vetores unitários \(\vec i\) e \(\vec j\)''. |
|} | |} | ||
|| 2 | || 2 |
Revisão das 12h33min de 30 de janeiro de 2013
Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor
Índice |
Referencial Cartesiano na reta
Um referencial cartesiano (afim) numa reta \(r\), é definido por dois pontos distintos \(O,U\in r\). \(O\) diz-se a origem e \(U\) o ponto unidade do referencial. O vector \(\overrightarrow{OU}\) diz-se o vector unitário do referencial e define uma orientação na reta: positiva quando esta é percorrida de \(O\) para \(U\) e negativa no outro caso. |
O referencial \(\mathcal{R}=(O,U)\), permite estabelecer uma correspondência bijectiva entre os pontos da reta \(r\) e o conjunto dos números reais. De facto, dado um ponto qualquer \(A\in r\), o vector \(\overrightarrow{OA}\) é colinear com \(\overrightarrow{OU}\) e, por isso, existe um e só número real \(a\in\mathbb{R}\) tal que \(\overrightarrow{OA} =a\ \overrightarrow{OU} \). Este número \(a\) é a chamada coordenada (afim) de \(A\) relativamente ao referencial \(\mathcal{R}\). Em particular, a coordenada do ponto \(O\) é \(0\) e a coordenada do ponto \(U\) é \(1\) (veja o applet. Comece por seleccionar \(U\) e depois mova o ponto \(A\). A coordenada de \(A\) é o número \(a\) indicado no applet, aproximado às 3 casas decimais).
Referencial Cartesiano no plano
Um referencial cartesiano (afim) no plano é um sistema constituído por 3 pontos \(O,I,J\) não colineares. \(O\) diz-se a origem do referencial. Os outros dois pontos determinam duas retas orientadas, respetivamente pelos vectores \(\overrightarrow{OI}\) e \(\overrightarrow{OJ}\). A orientação de cada uma dessas retas é positiva quando são percorridas de \(O\) para \(I\) e de \(O\) para \(J\), respetivamente, e negativa nos outros casos. Dado um ponto \(P\) do plano, por este ponto traçamos uma reta perpendicular a cada uma das retas orientadas. Encontramos assim os pontos \(A\) e \(B\), pontos de intersecção dessas retas com as retas orientadas (como se demonstra no applet). Estes pontos definem dois vetores, o vetor \(\overrightarrow{OA}\) colinear com \(\overrightarrow{OI}\), \(\overrightarrow{OA}=x \, \overrightarrow{OI}\), \(x \in \mathbb{R}\), e o vetor \(\overrightarrow{OB}\) colinear com \(\overrightarrow{OJ}\), \(\overrightarrow{OB}=y \, \overrightarrow{OJ}\), com \(y \in \mathbb{R}\). Os números \(x\) e \(y\) são então as coordenadas do ponto \(P\) relativamente ao referencial \(\mathcal{R}=(O,I,J)\). A cada ponto \(P\) do plano associamos, de forma unívoca, o par de coordenadas relativas a esse sistema de eixos (ou referencial). \[P \quad \longleftrightarrow \quad (x,y) \in \mathbb{R}^2\] \(x\) diz-se a abcissa e \(y\) a ordenada do ponto \(P\). Escrevemos então:
No applet comece por selecionar \(I\) e \(J\) e depois mova o ponto \(P\), as coordenadas de \(P\) são os números \(x\) e \(y\) indicados com aproximação às milésimas. |
As duas retas orientadas são denominadas de eixos do referencial. Em particular, à reta orientada pelo vetor \(\overrightarrow{OI}\) chamamos de eixo das abcissas ou eixo dos \(xx\) e à reta orientada pelo vetor \(\overrightarrow{OJ}\) chamamos de eixo das ordenadas ou eixo dos \(yy\). Na figura 1 podemos ver a indicação de cada um dos eixos coordenados e da origem do referencial representado.
Um referencial cartesiano no plano serve para estudar geometria plana com ajuda de álgebra, isto é, estudar Geometria Analítica em duas dimensões (2D).
As figuras do plano, tais como, retas, curvas, polígonos, e outros lugares geométricos, podem então ser descritos por equações ou inequações nas variáveis \(x\) e \(y\), onde \(P(x,y)\) designa um ponto genérico desse lugar.
Ortogonal e normado
Podemos ter vários tipos de referenciais consoante a posição relativa dos dois eixos coordenados e/ou da norma dos vetores unitários. Apresentam-se em seguida quatro tipos de referenciais assim como a denominação e descrição de cada um deles.
|
2 | ||
3 | 4 |
Referencial Cartesiano no espaço
Um referencial cartesiano (afim) no espaço é um sistema constituído por 4 pontos \(O,I,J,K\) não colineares. \(O\) diz-se a origem do referencial. Os outros três pontos determinam três retas orientadas, respetivamente pelos vectores \(\overrightarrow{OI}\), \(\overrightarrow{OJ}\) e \(\overrightarrow{OK}\). A orientação de cada uma dessas retas é positiva quando são percorridas de \(O\) para \(I\), de \(O\) para \(J\) e de \(O\) para \(K\), respetivamente, e negativa nos outros casos. Dado um ponto \(P\) do espaço, por este ponto fazemos passar um plano perpendicular a cada uma das retas orientadas. Encontramos assim os pontos \(A\), \(B\) e \(C\), pontos de intersecção dos três planos com as retas orientadas. Estes pontos definem três vetores, o vetor \(\overrightarrow{OA}\) colinear com \(\overrightarrow{OI}\), \(\overrightarrow{OA}=x \, \overrightarrow{OI}\), \(x \in \mathbb{R}\), o vetor \(\overrightarrow{OB}\) colinear com \(\overrightarrow{OJ}\), \(\overrightarrow{OB}=y \, \overrightarrow{OJ}\), com \(y \in \mathbb{R}\) e o vetor \(\overrightarrow{OC}\) colinear com \(\overrightarrow{OK}\), \(\overrightarrow{OC}=z \, \overrightarrow{OK}\), com \(z \in \mathbb{R}\). Os números \(x\), \(y\) e \(z\) são então as coordenadas do ponto \(P\) relativamente ao referencial \(\mathcal{R}=(O,I,J,K)\). A cada ponto \(P\) do espaço associamos, de forma unívoca, o terno de coordenadas relativas a esse sistema de eixos (ou referencial). \[P \quad \longleftrightarrow \quad (x,y,z) \in \mathbb{R}^3\] \(x\) diz-se a abcissa, \(y\) a ordenada e \(z\) a cota do ponto \(P\). Escrevemos então:
|
Da mesma forma que no plano, no espaço as três retas orientadas são também denominadas de eixos do referencial. A reta orientada por \(\overrightarrow{OI}\) é denominada de eixo das abcissas, a reta orientada por \(\overrightarrow{OJ}\) será o eixo das ordenadas e a reta orientada por \(\overrightarrow{OK}\) é chamada de eixo das cotas ou eixo dos \(zz\). Na figura 3 estão indicados cada um dos eixos coordenados do referencial representado.
Um referencial cartesiano no espaço serve para estudar geometria espacial com ajuda de álgebra, isto é, estudar Geometria Analítica em três dimensões (3D).
As figuras do espaço, tais como, retas, planos, curvas, superfícies, poliedros, e outros lugares geométricos, podem então ser descritos por equações ou inequações nas variáveis \(x\), \(y\) e \(z\), onde \(P(x,y,z)\) designa um ponto genérico desse lugar.
Quadrantes e Octantes
Os eixos de um referencial cartesiano dividem o plano em quatro partes aos quais chamamos de quadrantes, existe por isso quatro quadrantes. A figura seguinte ilustra esse divisão.
Como se pode verificar pela figura ao lado, no \(1º\) e \(4º\) quadrantes as coordenadas têm o mesmo sinal, ou são ambas positivas (\(1ºQ\)) ou ambas negativas (\(4ºQ\)). Já no \(2º\) e \(3º\) quadrantes as coordenadas têm sinais diferentes, no \(2ºQ\) as abcissas são negativas e as ordenadas positivas já no \(3ºQ\) é o contrário. |
O espaço é também dividido em partes pelos eixos coordenados, às quais chamamos de octantes, existem assim oito octantes. A figura 5 ilustra essa divisão.
O sinal das coordenadas dos pontos em cada um dos octantes pode ser resumido na seguinte tabela:
Octante | \((x,y,z)\) |
---|---|
\(1º\) | \((+,+,+)\) |
\(2º\) | \((-,+,+)\) |
\(3º\) | \((-,-,+)\) |
\(4º\) | \((+,-,+)\) |
\(5º\) | \((+,+,-)\) |
\(6º\) | \((-,+,-)\) |
\(7º\) | \((-,-,-)\) |
\(8º\) | \((+,-,-)\) |