Diferenças entre edições de "Ângulos e Circunferências"
(→Ângulos ao centro) |
|||
Linha 5: | Linha 5: | ||
---- | ---- | ||
− | = | + | =Ângulo ao centro= |
{| class="wikitable" | {| class="wikitable" | ||
Linha 23: | Linha 23: | ||
|} | |} | ||
+ | =Ângulo do segmento= | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | <ggb_applet height="250" width="270" showResetIcon="true" filename="Angulos2.ggb" /> || || Seja C uma circunferência de raio r>0, centrada num ponto O. O '''ângulo do segmento''' é um dos ângulos formado por uma corda e pela tangente a C numa das extremidades dessa corda. Por exemplo o ângulo BAC assinalado no applet. Este ângulo determina, ou subentende, um arco da circunferência C(no exemplo, o arco AB). Quando o ângulo ao centro é medido em radianos, qual o comprimento do arco subentendido? Como o ângulo de uma volta inteira (=2π rad) subentende o perímetro total da circunferência (=2πr, cm,por exemplo), então o ângulo ao centro α subentende um arco de | ||
+ | comprimento a, dado pela regra de três simples seguinte | ||
+ | |||
+ | \(\begin{array}{llll} 2\pi & \longleftrightarrow & 2\pi r\\ | ||
+ | \alpha & \longleftrightarrow & a \end{array}\) | ||
+ | |||
+ | donde se conclui que | ||
+ | |||
+ | a=2πrα2π=rα | ||
+ | |||
+ | medido na mesma unidade em que se mede o raio r (cm, por exemplo). | ||
+ | |} | ||
Revisão das 20h28min de 21 de dezembro de 2012
Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor
Ângulo ao centro
Seja C uma circunferência de raio r>0, centrada num ponto O. Um ângulo ao centro é um dos ângulos formados por
dois raios de C. Por exemplo o ângulo AOB assinalado no applet. Este ângulo determina, ou subentende, um arco da circunferência C(no exemplo, o arco AB). Quando o ângulo ao centro é medido em radianos, qual o comprimento do arco subentendido? Como o ângulo de uma volta inteira (=2π rad) subentende o perímetro total da circunferência (=2πr, cm,por exemplo), então o ângulo ao centro α subentende um arco de comprimento a, dado pela regra de três simples seguinte 2π⟷2πrα⟷a donde se conclui que a=2πrα2π=rα medido na mesma unidade em que se mede o raio r (cm, por exemplo). |
Ângulo do segmento
Seja C uma circunferência de raio r>0, centrada num ponto O. O ângulo do segmento é um dos ângulos formado por uma corda e pela tangente a C numa das extremidades dessa corda. Por exemplo o ângulo BAC assinalado no applet. Este ângulo determina, ou subentende, um arco da circunferência C(no exemplo, o arco AB). Quando o ângulo ao centro é medido em radianos, qual o comprimento do arco subentendido? Como o ângulo de uma volta inteira (=2π rad) subentende o perímetro total da circunferência (=2πr, cm,por exemplo), então o ângulo ao centro α subentende um arco de
comprimento a, dado pela regra de três simples seguinte 2π⟷2πrα⟷a donde se conclui que a=2πrα2π=rα medido na mesma unidade em que se mede o raio r (cm, por exemplo). |