Diferenças entre edições de "Ângulo (medidas)"

Da WikiCiências
Share/Save/Bookmark
Ir para: navegação, pesquisa
(Sistema circular)
Linha 66: Linha 66:
 
Um ângulo composto de 30 graus, 12 minutos, 8 segundos e 2 centésimos que simbolicamente podemos representar por \(30º\) \(12'\) \(8' '\) \(,02\)
 
Um ângulo composto de 30 graus, 12 minutos, 8 segundos e 2 centésimos que simbolicamente podemos representar por \(30º\) \(12'\) \(8' '\) \(,02\)
  
tem uma medida em graus de  \(\displaystyle 30+\frac{12}{60}+\frac{8}{3600}+\frac{2}{360\times 100}\).
+
tem uma medida em graus de  \(\displaystyle 30+\frac{12}{60}+\frac{8}{3600}+\frac{2}{360\times 100} \simeq \).
  
 
Para indicar a medida deste ângulo usamos habitualmente a notação \(30º\) \(12'\) \(8' '\) \(,02\) para nos referirmos ao número anterior.
 
Para indicar a medida deste ângulo usamos habitualmente a notação \(30º\) \(12'\) \(8' '\) \(,02\) para nos referirmos ao número anterior.
Linha 102: Linha 102:
 
|}
 
|}
 
|}
 
|}
 +
 +
<u>'''Exemplo'''</u>
 +
 +
Um ângulo composto de 20 grados, 8 minutos e 24 segundos que simbolicamente podemos representar por \(20^{g}\) \(8^{‵}\) \(24‶\)
 +
 +
tem uma medida em grados de  \(\displaystyle 20+\frac{8}{100}+\frac{24}{10000}=20,0824\).
 +
 +
Para indicar a medida deste ângulo no sistema centesimal usamos habitualmente a notação \\(20^{g}\) \(8^{‵}\) \(24‶\) para nos referirmos ao número anterior.
  
  

Revisão das 15h47min de 17 de fevereiro de 2013

Referência : Não citável Esta página ainda não foi aprovada.
Autor: João Nuno Tavares e Ângela Geraldo
Editor: Colocar nome do editor


Índice

Ângulos orientados

Noção de ângulo

Uma semi-reta de origem \(O\), pertencente a um dado plano, pode mover-se nesse plano rodando em torno de \(O\) em dois sentidos: ou no sentido contrário ao do movimento dos ponteiros do relógio que será o sentido positivo, ou no sentido oposto, sentido negativo. Quando a semi-reta partindo da posição \(a\), roda em torno da origem \(O\) acabando por ocupar a posição \(b\), diz-se que descreveu o ângulo \(\angle a,b\). À semi-reta \(a\) chamamos lado origem e à semi-reta \(b\) lado extremidade. O ponto \(O\) é o vértice do ângulo.

Assim, o ângulo é positivo ou negativo, conforme o sentido de rotação que leva o lado origem a ocupar a posição lado extremidade seja positivo ou negativo. Nestas condições, a ordem pela qual se consideram lados do ângulo não é indiferente tendo o ângulo um sentido (ângulo orientado).

Quando a semi-reta \(a\) descreve uma rotação em torno da origem \(O\) de tal forma que vem a ocupar a posição inicial, efetuando assim uma revolução completa num dado sentido, dizemos que essa semi-reta descreveu o ângulo de um giro, ou mais simplesmente, um ângulo giro. E como nada impede que esse movimento de rotação continue (no sentido positivo ou negativo), concebem-se assim ângulos (positivos ou negativos) que podem exceder um ou mais ângulos giros.

Portanto, um par ordenado \((a,b)\) de duas semi-retas com a mesma origem \(O\) corresponde a um ser geométrico múltiplo chamado ângulo trigonométrico, constituído por um número infinito de determinações, cada uma das quais se refere à amplitude e sentido da rotação que leva o lado origem a coincidir com o lado extremidade.

Medida dos ângulos

Se \(A\) e \(U\) forem duas grandezas (da mesma espécie contínua) e se \(U\) for não nula, existe um e um só número real \(\alpha\) tal que, \(A=\alpha U\). A este número \(\alpha\) chama-se a medida de \(A\) relativamente a \(U\). Determinar \(\alpha\) é medir a grandeza \(A\) tomando para unidade a grandeza \(U\).

Considerando agora os ângulos orientados, podemos afirmar que dados dois ângulos \(A\) e \(U\) (\(U\) não nulo), existe um e um só número real \(m\) tal que, \(A=m U\). O número \(m\) representa assim a medida do ângulo \(A\) relativamente à unidade \(U\).

Fixada a unidade \(U\) estabelece-se assim uma correspondência biunívoca entre o conjunto dos ângulos orientados e conjunto dos números reais (medidas dos ângulos). Esta correspondência é tal que a relação de igualdade, a relação de grandeza e a adição de ângulos se traduz, respetivamente, na relação de igualdade, na relação de grandeza e na adição de números reais.

A escolha da unidade \(U\) é arbitrária, mas habitualmente usa-se um dos três sistemas de unidades definidos em seguida.


Sistema sexagesimal

No sistema sexagesimal admite-se como unidade fundamental o grau. Um grau corresponde a \(\displaystyle \frac{1}{90}\) do ângulo reto que por sua vez é um quarto de um ângulo giro.

Assim sendo, um ângulo reto mede \(90º\) (90 graus) e um ângulo giro mede \(360º\) (360 graus) pois 90\(\times\)4=360.

Como submúltiplos do grau usam-se:

O minuto sexagesimal \((1')\) corresponde a \(\displaystyle \frac{1}{60}\) do grau, ou seja, 60 minutos sexagesimais são 1 grau.

O segundo sexagesimal \((1' ')\) corresponde a \(\displaystyle \frac{1}{60}\) do minuto e portanto \(\displaystyle \frac{1}{3600}\) do grau, ou seja, 3600 segundos sexagesimais são 1 grau.

O décimo do segundo, o centésimo do segundo etc.

Submúltiplos do grau Um grau
Minutos 60
Segundos 3600
Décimos de segundo 36000
Centésimos do segundo 360000
\(\dots\) \(\dots\)

Exemplo

Um ângulo composto de 30 graus, 12 minutos, 8 segundos e 2 centésimos que simbolicamente podemos representar por \(30º\) \(12'\) \(8' '\) \(,02\)

tem uma medida em graus de \(\displaystyle 30+\frac{12}{60}+\frac{8}{3600}+\frac{2}{360\times 100} \simeq \).

Para indicar a medida deste ângulo usamos habitualmente a notação \(30º\) \(12'\) \(8' '\) \(,02\) para nos referirmos ao número anterior.


Sistema centesimal

No sistema centesimal admite-se como unidade fundamental o grado. Um grado corresponde a \(\displaystyle \frac{1}{100}\) do ângulo reto que por sua vez é um quarto de um ângulo giro.

Assim sendo, um ângulo reto mede \(100^{g}\) (100 grados) e um ângulo giro mede \(400^{g}\) (400 grados) pois 100\(\times\)4=400.

Como submúltiplos do grado usam-se:

O minuto centesimal \((1^{‵})\) corresponde a \(\displaystyle \frac{1}{100}\) do grau, ou seja, 100 minutos centesimais são 1 grado.

O segundo centesimal \((1‶)\) corresponde a \(\displaystyle \frac{1}{100}\) do minuto e portanto \(\displaystyle \frac{1}{10000}\) do grado, ou seja, 10000 segundos centesimais são 1 grado.

O décimo do segundo centesimal, o centésimo do segundo centesimal etc.

Submúltiplos do grado Um grado
Minutos 100
Segundos 10000
Décimos de segundo centesimal 100000
Centésimos do segundo centesimal 1000000
\(\dots\) \(\dots\)

Exemplo

Um ângulo composto de 20 grados, 8 minutos e 24 segundos que simbolicamente podemos representar por \(20^{g}\) \(8^{‵}\) \(24‶\)

tem uma medida em grados de \(\displaystyle 20+\frac{8}{100}+\frac{24}{10000}=20,0824\).

Para indicar a medida deste ângulo no sistema centesimal usamos habitualmente a notação \\(20^{g}\) \(8^{‵}\) \(24‶\) para nos referirmos ao número anterior.


Sistema circular

No sistema circular a unidade de medida é o radiano. Como sabemos um radiano é a medida de um ângulo ao centro definido num círculo por um arco com o mesmo comprimento que o raio do círculo. Sabemos também que existe proporcionalidade direta entre a medida de um ângulo ao centro e o comprimento do arco correspondente. Considerando o ângulo da figura 1 podemos então estabelecer que:

\[\frac{\mbox{medida de um radiano}}{\mbox{medida de um ângulo giro}}=\frac{\mbox{comprimento do arco } AB}{\mbox{comprimento da circunferência}}\]

Como o comprimento do arco \(AB\) é igual ao raio do círculo, resulta que

\[\frac{\mbox{medida de um radiano}}{\mbox{medida de um ângulo giro}}=\frac{r}{2\pi r}=\frac{1}{2\pi}\]


Esta relação mostra que a medida de um ângulo giro é de \(2\pi\) radianos. Estabelecendo a relação com os dois sistemas de unidades anteriores temos que:

\(360º=2\pi \mbox{ radianos}\) e \(400^{g}=2\pi \mbox{ radianos}\)

Daqui resulta que,

\(\displaystyle 1 \mbox{ radiano}={\left(\frac{360}{2\pi}\right)}^{\circ} \simeq 57º \,\, 17' \,\, 45' '\)

\(\displaystyle 1 \mbox{ radiano}=\left(\frac{400}{2\pi}\right)^{g} \simeq 63º \,\, 66^{‵} \,\, 20‶ \)

Passagem de um sistema de unidades para outro

Notas históricas

Referências

  1. J. Jorge G. Calado (1974) "Compêndio de Trigonometria" 4ªedição. Liv. Popular de Francisco Franco, Lisboa.
  2. Elemento 2
  3. Elemento 3